

YILDIZ TECHNICAL UNIVERSITY

DEPARTMENT OF BIOMEDICAL ENGINEERING

BME3321 INTRODUCTION TO MICROCONTROLLER

PROGRAMMING LABORATORY

EXPERIMENT SHEETS

Experiment 1: C Programming Language Basics: Data Types, Variables, Arrays, Loops,
Conditionals, Functions , Pointers , Structures

Objectives

The objectives of Experiment 1 are
● to learn C programming language basics Data types, Variables, Arrays, Loops,

Conditionals, Functions , Pointers , Structures

Apparatus Required:

● Dev C++

Preliminary Work:

● Install required Dev C++ programme (https://sourceforge.net/projects/orwelldevcpp/)

Figure 1

● Study the L03 notes.
● Write the following codes in the experimental work in Dev C++.

https://sourceforge.net/projects/orwelldevcpp/

Experimental Work:

1. Logical Operator

Write the code that will calculate the truth table of the p’Vq proposition using OR operator and

display it on the screen. Don't forget to adjust the spaces to make the output look neat.

Figure 2: Program Output Window

Answer:

#include <stdio.h>

int main (void)

{

printf(" p q ~pVq\n");

printf("----------------------\n");

printf("%3d%5d%7d \n", false, false, !false||false);

printf("%3d%5d%7d \n", false, true, !false||true);

printf("%3d%5d%7d \n", true, false, !true||false);

printf("%3d%5d%7d \n", true, true, !true||true);

return (0);

}

2. Loops (for-while) & Conditionals

a. Write the code that produces the following output by using nested loops.

1

2 1

3 2 1

4 3 2 1

5 4 3 2 1

6 5 4 3 2 1

7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

Figure 4: Program Output Window

Answer:

include <stdio.h>

int main (void)

{

int i,j;

for (i=1; i<=8; i++)

{

for (j=i; j>=1; j--)

{

 printf("%3d", j);

 }

 printf("\n");

}

return(0);

}

b. Write the C program that receives the n value from the user, which is a positive

integer value, as input and find all prime numbers up to n and display them on the

screen.

Figure 3: Program Output Window

Answer:

#include <stdio.h>

int main (void)

{

int n;

int num, p,i;

printf("Enter positive integer: ");

scanf("%d", &n); /*Taking n value*/

printf("\n All prime number between 1-%d: ",n);

printf("\n---------------------------------------\n");

for(num = 2; num <= n; num = num+1)

{/*Let's assume that the number is prime: p=1 means the number is prime, p=0 means it is

not prime*/

p=1; /*Assume the number is prime*/

i=2; /*The variable i is used to control which numbers the number entered by the user can be

divided by i*/

while ((i<num) && p==1)

{

if (num%i == 0)

p=0; /*The number is not prime because it is divisible.*/

i=i+1;

}

if (p==1)

printf("%4d" , num); }

return (0);

}

3. Functions

Write a code that takes a positive integer value from the user and shows the number of digits of

the integer on the screen. While writing the code, use the function named 8basamak_bul ()’.

basamak_bul () function must receive an integer value from where it was called, find the number

of digits of the integer and return it to where it was called.

Figure 5: Program Output Window

Answer:

#include <stdio.h>

int basamak_bul(int x);

int main (void)

{

int a,t;

printf("Enter an integer number: ");

scanf("%d",&a);

t=basamak_bul(a);

printf("\nNumber of digits: %d",t);

return(0);

}

int basamak_bul(int x)

{

int digit = 0;

while (x)

{

digit = digit+1;

x=x/10;

}

return(digit); }

4. Pointers

a. Write the C program that orders 3 integers received from the user and displays the first input

values and sequential values on the screen. Return the sequential numbers as reference

parameters. (Use the pointers for this.) Use the 8replace ()9 function to sort the 3 numbers.

 Figure 6: Program Output Window

Answer:

#include <stdio.h>

/* Program that sorts the 3 entered numbers*/

void replace(int*,int*);

int main (void)

{

int x,y,z;

printf("Enter three numbers: ");

scanf("%d%d%d", &x,&y,&z);

printf("First values: %d %d %d\n", x,y,z);

if (x>y) replace(&x,&y);

if (x>z) replace(&x,&z);

if (y>z) replace(&y,&z);

printf("Ordered values: %d %d %d\n", x,y,z);

}

/*replace() function that changes the values of two parameters*/

void replace(int *a, int *b)

/*a and b are taken as reference parameters. Therefore, changes in this function will be

reflected in the sent parameter.*/

{

int temporary;

temporary = *a;

*a = *b;

*b = temporary;

}

b. Write a function that finds the perimeter and area of a rectangle. In the function, receive the

width and length of the rectangle as the value parameter and return the perimeter and area

as the reference parameter.

Figure 7: Program Output Window

Answer:

/* Program to find the perimeter and area of a rectangle. While the width and height of the

rectangle are taken as value parameters, the perimeter and area are returned as reference

parameters */

#include<stdio.h>

void perimeter_area(int, int , int*, int*);

int main (void)

{

int width,length,perimeter,area;

printf("Enter the length and width of the rectangle ");

scanf("%d%d",&length,&width);

if (length<0 || width<0)/*input control*/

printf("\nYou entered the wrong value");

else

{

perimeter_area(width, length , &perimeter, &area);

printf("perimeter of the rectangle: %d\n", perimeter);

printf("Area of the rectangle : %d\n", area);

}

}

void perimeter_area(int w, int l, int *e, int *a)

{

e = 2 (w+l); /*Calculate perimeter*/

*a = w*l; /*Calculate area*/ }

5. Arrays

Write a C program in which the user enters integers in a 5-element array and after each integer

value entered in the array, it shows whether the entered number is odd or even. This program

should consist of two functions. The 8bul ()9 function must receive an integer value from where it

is called and show it is odd or even. The 8main ()9 function should receive 5 integer values from

the user, store them in an array and show that the array elements are odd or even using the bul()

function.

Figure 8: Program Output Window

Answer:

#include<stdio.h>

void bul (int);

int main (void)

{

int k[5],i;

for (i = 0; i<=4 ; i++)

{

 printf("Enter an integer values: ");

scanf("%d",&k[i]);

 bul(k[i]);

}

return(0);

}

void bul (int a)

{

if (a%2 == 0)

 printf("%d is an even number\n ", a);

 else

 printf("%d is an odd number\n ", a);

}

6. Structures

Write a program that receives the coordinates of two points (x1,y1) and (x2,y2) as input from

the user and calculates the distance between them. The x and y coordinates of each point in

your program should be kept in a struct. The distance formula is as follows:

distance= (ý1 − ý2)2 + (þ1 − þ2)2

Figure 9: Program Output Window

Answer:

#include <stdio.h>

#include <math.h>

int main (void)

{

struct point

{

int x,y;

};

struct point p1, p2;

float distance;

/*Read the coordinates of two points*/

printf(" Enter x and y coordinates of point 1 :");

scanf ("%d %d", &p1.x, &p1.y);

printf(" Enter x and y coordinates of point 2 :");

scanf ("%d %d", &p2.x, &p2.y);

/* Calculate the distance between two points*/

distance = sqrt (((p1.x-p2.x)*(p1.x-p2.x))+((p1.y-p2.y)*(p1.y-p2.y)));

printf(" Distance of the two points : %5.2f", distance);

return (0); }

EXPERIMENT 2: GENERAL-PURPOSE INPUT/OUTPUT (GPIO)

Objectives

The objectives of Experiment 2 are
● to learn tools/environment for STM32F4 microcontroller programme and architecture
● to use Driving GPIO functions (HAL_GPIO_WritePin, HAL_GPIO_ReadPin,

HAL_GPIO_TogglePin) and GPIO Output Data Register (ODR), GPIO Input Data
Register (IDR)

Apparatus Required:

● STM32CubeMx
● Keil µVision (MDK ARM)
● STM32 ST-Link Utility
● STM32F4 Microcontroller
● STM32F4 Reference Manual
● STM32F4 User Manual

Preliminary Work:

1. Install required programmes (STM32CubeMx, Keil µVision (MDK ARM), STM32
ST-Link Utility)
STM32CubeMx-----> https://www.st.com/en/development-tools/stm32cubemx.html
ST-Link Utility-----> https://www.st.com/en/development-tools/stsw-link004.html
Keil µVision-------->https://www.keil.com/download/product/

Figure 1

2. Study the GPIO (Lecture 4) notes. Write the codes of the experimental work in Keil
µVision at home.

https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stsw-link004.html
https://www.keil.com/download/product/

Experimental Work:

1. First, open the CubeMx program. Select <Manage embedded software packages= from
the 8Help9 menu (Figure 2).

Figure 2

2. According to the microcontroller you have, the relevant package (STM32F4) is
selected and installed (Figure 3).

Figure 3

3. To prevent it from updating in ordinary, settings are made as seen in Figure 4 and
Figure 5.

Figure 4

Figure 5

4. Now you can create a new project file to start programming. Select <New Project=
from the File menu (Figure 6). The relevant microcontroller is found and selected
from the Part Number as in Figure 7. After choosing our STM32F4 discovery card,
choose <Start Project= from the top menu (Figure 7).

Figure 6

Figure 7

5. You will see a screen like in Figure 8. You can see the schematic of the
microcontroller you will use here. You can use it this way. However, in terms of power
consumption and more stable operation, it will be better if you turn off the pins that
you will not use in the lab. The green ones show the open pins and the gray ones show
the reset state ones. In this lab, you will basically use push pull buttons and leds. So
you can turn off the others. Which of these pins are can be understood by looking at
the user manual. You should not close the pins that provide the connection between
the microcontroller and the programmer. You can check which of these pins are in the
user manual (Figure 9). You can close and define tasks of a pin by left-clicking on the
pin. You completed the Pinout Configuration.

Figure 8

Figure 9

6. There is nothing we can change in the Clock Configuration section for this
experiment. Come to the Project Manager menu and set the fields as in Figure 10
(Give the project name using English characters without spaces. You can create the
project in a file on the desktop. Select the MDK-ARM option for Toolchain/IDE.
Uncheck 'Use latest available version' to prevent it from updating). Then select the
Generate Code and so the template file is out. Select <Open Project= from the opened
screen (Figure 11). Keil µVision will be opened.

Figure 10

Figure 11

7. First, you need to come to the Pack Installer (Figure 12) and install the package of the
relevant microcontroller, as you did in CubeMx. The relevant microcontroller is
selected from the 8Search9 menu and 8Install9 is selected for the required package(.....)
(Figure 13).

Figure 12

Figure 13

8. Select <Options for Target= menu (Figure 14). Come to the <Debug= menu and select
<ST Link Debugger= and 8Settings9, respectively (Figure 15). Then choose <Reset and
Run= from <Flash Download'' so that when you run our code, it will reset its previous
information. If you do not select it, you have to press the reset button for the code to
run (Figure 16). When you go back to the previous menu, you should choose the
<C++= menu and select the <Level 0= for Optimization (Figure 17).

Figure 14

Figure 15

Figure 16

Figure 17

9. Now you can start to write our code. The <main.c= file on the left is the file created for
us in Keil µVision. Here, you can write various codes using the C language.

Follow the steps below for each code you want to run.

● Write the relevant codes in the part reserved for the user in the while loop.
● After writing the codes, click the build button to create the hex file and other files that

will be uploaded to the microcontroller.
● Click the 8Load9 button to load the codes into the microcontroller.

Figure 18

1. Use the HAL_GPIO_TogglePin function. Write the following code. Then write the
same code without using the 8HAL_Delay9 function.

//Toggle the LED connected to the D12 pin at half-second intervals.
HAL_GPIO_TogglePin(GPIOD,GPIO_PIN_12); // to toggle led which is connected to
the D12 pin.
HAL_Delay(500); //Wait 500 ms

2. Use the 8HAL_GPIO_WritePin9 function. Write the following code.

// Toggle the LED at 2 second intervals
HAL_GPIO_WritePin (GPIOD, GPIO_PIN_14, GPIO_PIN_SET); //Write logic 1 to
the output data register of the pin
HAL_Delay(2000); //Wait 2 s
HAL_GPIO_WritePin (GPIOD, GPIO_PIN_14, GPIO_PIN_RESET); //Write logic 0
to the output data register of the pin
HAL_Delay(2000); //Wait 2 s

3. Use the Output Data Register (ODR) directly

// Use Output Data register directly
GPIOD->ODR|=0xF000; // Turn on the leds connected to the D12,D13,D14&D15
pins.

4. Toggle the LEDs using 8ODR9.

// Use Output Data register directly to do toggle leds
GPIOD->ODR|=0xF000; // Turn on the leds connected to the D12,D13,D14&D15
pins.
HAL_Delay(2000); //Wait 2 s
GPIOD->ODR&=0x0000; // Turn off the leds connected to the D12,D13,D14&D15
pins.
HAL_Delay(2000); //Wait 2 s

5. Floating light respectively using 8ODR9

//bitwise shifting
GPIOD->ODR|=0xF000; //All of the leds on
HAL_Delay(500); //Wait 500 ms
//Shift the bits right
for (i=1;i<5;i++)
{
 GPIOD->ODR>>=1; //Shift the bits right
 HAL_Delay(500); //Wait 500 ms

}

6. Floating light respectively using 8ODR9.

//bitwise shifting
 GPIOD->ODR=0x0F00; //All of the leds off (assign bit values)
 HAL_Delay(500); //Wait 500 ms
 //Shift the bits left
 for (i=1;i<5;i++)
 {
 GPIOD->ODR<<=1; //Shift the bits left
 HAL_Delay(500); //Wait 500 ms
 }

7. The program that toggles the LEDs when we push the button using IDR (Input Data
Register).

 if (GPIOA->IDR&0x0001) //Checking if the button is pushed
 {
 HAL_GPIO_TogglePin(GPIOD,GPIO_PIN_12); // to toggle led which is connected to
the D12 pin.

 HAL_Delay(200); //Wait 200 ms
 }

EXPERIMENT 3: GENERAL-PURPOSE INPUT/OUTPUT (GPIO)

Objectives

The objectives of Experiment 3 are
● to learn how to use
✔ GPIO Output Data Register (ODR),
✔ Reading Button Value using Input Data Register (IDR),
✔ Debugger,
✔ Bit Set Reset Register (BSRR),
✔ GPIO_ReadPin function

Apparatus Required:

● STM32CubeMx
● Keil µVision (MDK ARM)
● STM32 ST-Link Utility
● STM32F4 Microcontroller
● STM32F4 Reference Manual
● STM32F4 User Manual

Preliminary Work:

1. Study the GPIO (lecture 4) notes.
2. Write the codes of the experimental work in Keil µVision.

Experimental Work:

1. Reading Button Value (Button debouncing). You can understand whether your code is
running and control the changes of the variable (Figure 1->Start/Stop Debug Session)
using the debugger. Come to the i variable and right click. We select <Add i to= and
<Watch 1= (Figure 2). Then click to <Run= and follow the changes of variable i (Figure
1). Right-click on the i which is in the Watch 1 window to convert the i displayed as
hexadecimal to decimal. Here you can reset the i value by pushing the reset button on
STM32F4G-DISC card and doing a hardware reset.

// Program that increase the value of the variable i by one each time the button is pushed

 if (GPIOA->IDR&0x0001) //Checking if the button is pushed using IDR
 {
 i=i+1; // Increase the value of the variable i by one each time the button is pushed
 }

Figure 1

Figure 2

2. Reading Button Value (Prevent button debouncing using HAL_Delay)

 // Program that increments the value of the variable i by one each time the button is pushed

 if (GPIOA->IDR&0x0001) //Checking if the button is pushed using IDR
 {
 i=i+1;
 HAL_Delay(200); //Wait 200 ms
 }

3. The program that turns on the LEDs when we push the button.

 if (GPIOA->IDR&0x0001) //Check if the button is pushed
 {
 i=i+1;

 HAL_Delay(200); //Wait 200 ms
 GPIOD->ODR=0xF000; //Assign 1 to the PD12, PD13, PD14 & PD15 pins

 }

4. The program that turns the LEDs on when we push the button otherwise turns the
LEDs off (use BSRR to assign logic 0 to the relevant pins)

 GPIOD->BSRR=0xFFFF0000; //Reset ODR pins of the D port using BSRR
 if (GPIOA->IDR&0x0001) //Check if the button is pushed using IDR
 {
 i=i+1;
 GPIOD->ODR=0xF000; //Assign 1 to the PD12, PD13, PD14 & PD15 pins and
 HAL_Delay(2000); //Wait 2 second
 }

5. The program that turns the LEDs on when we push the button otherwise turns the
LEDs off (use ODR to assign logic 0 to the relevant pins)

 GPIOD->ODR=0x0000; //Assign logic 0 to the pins at the D port
 if (GPIOA->IDR&0x0001) //Checking if the button is pushed using IDR
 {

 i=i+1;
 HAL_Delay(200); //Wait 0.2 second

 GPIOD->ODR=0xF000; //Assign 1 to the PD12, PD13, PD14 & PD15 pins,
 HAL_Delay(2000); //Wait 2 second
 }

6. The program that turns the LEDs on when we push the button otherwise turns the
LEDs off (use ODR to assign logic 0 to the relevant pin and use ReadPin function to
read the button).

 GPIOD->ODR=0x0000; //Assign logic 0 to the pins at the D port

 if(HAL_GPIO_ReadPin(GPIOA,GPIO_PIN_0)) //Check if the button is pushed using
ReadPin function

{
 i=i+1;
 HAL_Delay(200); //Wait 0.2 second
 GPIOD->ODR=0xF000; //Assign 1 to the PD12, PD13, PD14 & PD15 pins, assign
 HAL_Delay(2000); //Wait 2 second
 }

7. A program that increases the value of i by one each time a button is pushed, at the
same time, if i is an even number, toggles the related LED(which is connected to the
PD12 pin), otherwise it turns off the LED (Control the i value using debugger). Use
debug to see how to change the i variable.

while (1)
{

if(GPIOA->IDR&0x0001) //Check if the button is pushed using IDR

{

i=i+1; // Increase the value of i by one each time a button is pushed.

HAL_Delay(200);

}

// If i is an even number, let the led toggle otherwise led is off

if(i%2==0) //Check for an even number

{

 HAL_GPIO_TogglePin(GPIOD,GPIO_PIN_12); //Toggle 12th pin of the D port.

 HAL_Delay(200); //Wait 0.2 second

}

else

{

 GPIOD->BSRR=0xFFFF0000; //Reset ODR’s pins of the D port using BSRR

}

 }

8. Create a function named button that checks if the value of the variable i is an even
number or not. If the value of the variable i is an even number, this function will turn
on the LEDs connected to the 12th and 14th pins of the D port, otherwise LEDs which
are connected to 13th and 15th pins of the D port. Then, write another code in the while
loop that checks if the button is pushed and increments the value of the variable i by
one each time the button is pushed. Call the button function here. Use the debugger to
monitor what the value of the variable i is each time you push the button, and also
observe which led is lit based on that value.

(Create the button function at the part of the Private function prototypes (PFP) in the
main.c file.
Write a code in while loop to check if button is pushed and call button function here)

//If it is an even number, the function that turn on the LEDs connected to the 12th. and
14th pins of the D port, otherwise the function that turns on the LEDs connected to the
13th. and 15th pins of the D port.

void button (int a) // Creating a function named button
{
if (a%2==0) //Check if a is an even number
{
 GPIOD->ODR=0x5000; //Turn on the LEDs which are connected to 12th. and 14th
pins of the D port
}
else
{
 GPIOD->ODR=0xA000; //Turn on the LEDs which are connected to 13th. and 15th
pins of the D port
}
}

while (1)
{
//Checking if the button is pushed and calling the button function
if(GPIOA->IDR&0x0001) // Check if the button is pushed
{
 i=i+1;
 HAL_Delay(200);
}
 button(i); //Call the button function
}

EXPERIMENT 4: INTERRUPTS

Objectives

The objectives of Experiment 4 are
● to learn how to use interrupt peripherals

Apparatus Required:

● STM32CubeMx
● Keil µVision (MDK ARM)
● STM32 ST-Link Utility
● STM32F4 Microcontroller
● A Jumper Cable (female-female)

Preliminary Work:
1. Study the Interrupt (L05) notes
2. Write the codes of the experimental work in Keil µVision.

Experimental Work:

1. Create a new project in CubeMx. Select STMF407VGTx and then
STM32F407G-DISC1. First adjust the Pinout&Configuration settings. Close the
unnecessary pins. Select the PA0 pin as GPIO_EXTI0 and PA1 pin as GPIO_EXTI1.
Select the PD 12-13-14-15 pins as GPIO_Output.

2. Come to the System Core menu. You can change the pin configurations by selecting
related pins from here (Figure 1). Select the pull down for PA0&PA1 pins. Select
<Output Push Pull= for the GPIO Mode, <Low= for the GPIO output level &
Maximum output speed for related pins (PD12- PD13- PD14- PD15).

Figure 1

3. Come to the NVIC menu. Firstly set the enable mode for the EXTI line0 & EXTI
line1(Figure 2, 1 and 2 steps). Then, identify the priority levels of the interrupts.
Select the Priority Group as 2 bits (which indicate how many bits are needed to
identify the priority level) (Figure 2, 3. step). Then, select preemption priority as 1 for
the EXTI0 and as 2 for the EXTI1 (Figure 2, 4. step).

Figure 2

4. Come to the Clock Configuration menu and control the settings as in Figure 3.

Figure 3
5. Come to the Project Manager and adjust necessary settings as in Figure 4. Then click

the Generate Code (Figure 4). Keil µVision programme will be opened. You can see
the settings which were already done in CubeMx in the main.c file in Keil µVision
(Figure 5). You can change the adjustments from here without going back to the
CubeMx. Build the codes in the main.c file. Double click the interrupt file
(stm32f4xx.c). You can see the interrupts functions here (Figure 6). You can write
codes in the functions. If you want to understand what the function does, you can right
click on the function and select the 8Go to Definition…9 shown as in Figure 7.

Figure 4

Figure 5

Figure 6

Figure 7

6. a. Write an interrupt handler function that increases by 1 the value of the variable i if
an interrupt is generated from the PA0 pin. Write the codes in EXTI0_IRQHandler
function in stm32f4xx_it.c file.
b. Write an interrupt handler function that increases by 1 the value of the variable a if
an interrupt is generated from the PA1 pin. Write the codes in EXTI1_IRQHandler
function in stm32f4xx_it.c file.
Don9t forget to identify variable a and i variables in the 8private variables9 part of the
stm32f4xx_it.c file.
Observe the change of the i variable when you push the button using debugger.

Figure 8
7. Follow the instructions given in a, b, c in order. The relevant codes are given below.

a. When there is no interrupt, the LED connected to the 12th pin lights up
continuously. (Write the relevant code inside the while loop in main.c).

 while (1)
 {
 /* USER CODE BEGIN 3 */
 //Light the 12th pin when the interrupt handler is not working
 HAL_GPIO_TogglePin(GPIOD,GPIO_PIN_12); // Toggle the PD12 LED
 HAL_Delay(100); //Wait 100 ms
 }
 /* USER CODE END 3 */

b. When the interrupt is received from the PA0 pin, the value of the i variable
increases by 1. Reset all pins connected to port D using BSRR. After the LED is
connected to the PD13 pin lights for 5 seconds, all the pins connected to the D port
are reset again. Write the relevant code inside the EXTI0_IRQHandler function.

void EXTI0_IRQHandler(void)
{
 HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
 /* USER CODE BEGIN EXTI0_IRQn 1 */
i=i+1; //increase i value by 1
GPIOD->BSRR=0xFFFF0000; //Reset the PD pins
GPIOD->BSRR=0xFFFF2000; // Set 1 PD13
HAL_Delay(5000); //Wait 5 s
GPIOD->BSRR=0xFFFF0000; // Reset the PD pins
 /* USER CODE END EXTI0_IRQn 1 */
}

c. When the interrupt is received from the PA1 pin, the value of the 8a9 variable
increases by 1. Reset all pins connected to port D using BSRR. After the LED is
connected to the PD15 pin lights for 5 seconds, all the pins connected to the D port
are reset again. Write the relevant code inside the EXTI1_IRQHandler function.

void EXTI1_IRQHandler(void)
{
 HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1);
 /* USER CODE BEGIN EXTI1_IRQn 1 */
a=a+1; //increase a value by 1
GPIOD->BSRR=0xFFFF0000; //Reset the PD pins
GPIOD->BSRR=0xFFFF8000; // Set 1 PD15
HAL_Delay(5000); //Wait 5 s
GPIOD->BSRR=0xFFFF0000; // Reset the PD pins
 /* USER CODE END EXTI1_IRQn 1 */
 }

d. Compile the codes and upload them to the microcontroller. Observe the change of i
and a variable using debugger. Use the button on the microcontroller to send an
interrupt from the PA0 pin. Use the 5V on the microcontroller discovery card to
send the interrupt from the PA1 pin (You can connect 5V to the PA1 pin with the
help of a jumper).

8. Use priorities of the interrupts (Go back to the 3 to remember the priorities of the
interrupts). Use the same codes as in 7.
a. After giving an interrupt from PA0 pin, give another interrupt from PA1 pin before
the interrupt handler is completed. Observe the changes of i, variables and LEDs.
Observe the 8Tail Chaining Scenario9.
b. After giving an interrupt from PA1 pin, give another interrupt from PA0 pin before
the interrupt handler is completed (Late Arrival Scenario). Observe the changes of i,
variables and LEDs.

9. Learn how to use the interrupt mask register (Examine the properties of the register
from Reference Manual). Write a code inside the EXTI1_IRQHandler function. When
a value is greater than 5, mask pin 1 using the Interrupt Mask Register. Use
EXTI->IMR statement to reach the interrupt mask register and assign a hexadecimal
number to this register that will set the corresponding pin value to zero. Build and
Load the code. Use a debugger to observe the chaining of a value. Write down your
observations about what the result was.

void EXTI1_IRQHandler(void)

{

 HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1);

 /* USER CODE BEGIN EXTI1_IRQn 1 */

a=a+1;

GPIOD->BSRR=0xFFFF0000;//Reset the PD pins

GPIOD->BSRR=0xFFFF8000;// Set 1 PD14

HAL_Delay(5000); //Wait 5 s

GPIOD->BSRR=0xFFFF0000;// Reset the PD pins

//Since a>5, interrupts from line 1 are not detected

if (a>5)

{

EXTI->IMR=0x7FFFFD; //Masked the 1. pin

}

 /* USER CODE END EXTI1_IRQn 1 */

}

EXPERIMENT 5: TIMERS

Objectives

The objectives of Experiment 5 is
● to learn how to use Timer peripherals

Apparatus Required:

● STM32CubeMx
● Keil µVision (MDK ARM)
● STM32 ST-Link Utility
● STM32F4 Microcontroller
● A Female-Female Jumper Cable

Preliminary Work:
1. Study the Timer (lecture 6,7) notes
2. Write the codes of the experimental work in Keil µVision.

Experimental Work:

1. Create a new project in CubeMx (Figure 1). Select STMF407VGTx, then
STMF407G-DISC1 and finally Start Project (Figure 2). First adjust the
Pinout&Configuration settings. Close the unnecessary pins (Figure 3).

Figure 1

Figure 2

Figure 3

2. We use General Purpose Timers (TIM2 to TIM5) mostly, so look at the reference
manual to get information about these timers. Find out which bus is connected to
TIM2 from the reference manual. Then come back to CubeMx and check the speed of
this bus in the Clock Configuration tab (Figure 4). Then come back to
Pinout&Configuration tab and choose which timer you will use (we will use TIM2)
and make the necessary settings for this timer (select clock source as internal clock)
(Figure 5). Adjust these settings as the prescaler value is 41999, counter mode is up,
counter period is 1999. Think about what the meaning of these adjustments are. Go to
the NVIC tab and enable the interrupt (Figure 6). Also, go to NVIC in the System
Core tab and adjust Preemption Priority value as 1 for the TIM2 (Figure 7).

Figure 4

Figure 5

Figure 6

Figure 7

3. Come to the Project Manager tab and set necessary configurations here. Then you can
continue with the Keil µVision. Don9t close the CubeMx, because you will change
something from CubeMx.

Figure 8

4. Build the main.c file.

Figure 9

5. Start the TIM2 in interrupt mode using the HAL_TIM_Base_Start_IT function under
/*USER CODE BEGIN 2*/ comment line in main.c file. Then go to the interrupt file
(stm32f4xx_it.c) to write the interrupt.

Figure 10

6. Come to the 8TIM2_IRQHandler9 function in the stm32f4xx_it.c file. When the timer
completes each period value, write the code that comes into the interrupt request and
increases the i variable by 1. Don9t forget to define 8int i9. Build the file and load the
codes to the microcontroller. Observe the change of i variable using debugger. Think
about what's going on inside the TIM2_Handler function and how.

Figure 11

7. Make a clock application using the TIM2 timer. Define three variables: second,
minute, hour. Increment the value of the second variable each time an interrupt request
is generated. When the value of the variable i is equal to 60, reset it again and assign a
value to the minute variable. When the value of the minute variable is equal to 60, the
value of the minute is reset and the value of the hour variable is increased by one.
When the value of the hour variable is equal to 12, the value of the hour variable is
also reset. Let the cycle continue like this. Observe the change of variables using
debug.(Figure 12.1)
Change the htim2.Init.Period value as 19 in main.c file (Figure 12.2). Observe the
change of variables using debug. Explain how there has been a change in the operation
of the code.

Figure 12.1

Figure 12

8. Close the Keil µVision and go back to CubeMx to generate a PWM signal. Use
another TIM (TIM4) so disable the clock source for TIM2 (Figure13). Find out
which bus TIM4 is connected from the reference manual. Then come back to CubeMx
and check the speed of this bus in the Clock Configuration tab. Then come back to
Pinout&Configuration tab and choose which timer you will use (we will use TIM4)
and make the necessary settings for this timer (select clock source as internal clock
and PWM Generation CH4)(Figure 14). Adjust these settings as prescaler value is
41999, counter mode is up, counter period is 1999. Explain what the meaning of these
adjustments are. Come to the Project Manager tab and set necessary configurations
here. Then you can continue with the same Keil µVision file (Figure 15).

Figure 13

Figure 14

Figure 15

9. You can see the functions for PWM in the HAL Library as shown in Figure 16. We
use the HAL_TIM_PWM_Start function. This PWM signal is on in 500 of the
Counter Period and off in the remaining 1500. Use __HAL_TIM_SetCompare macron
(Figure 17). Observe the condition of the LED connected to the PD15 pin.

Figure 16

Figure 17

10. Use CCR (Capture Compare Register) directly to generate PWM signals. This PWM
signal is ON mode in 100 of the Counter Period and OFF mode in the remaining 1900.
Change the value of ON and OFF mode as 1500, 1000 respectively (Changing duty
cycle). Observe the conditions of the LED connected to the PD15 pin.

Figure 18

11. Now, we continue with input capture mode. First, you close the Keil µVision and go
back to the CubeMx and change some configurations. Use TIM2 in input capture
mode and Channel 1 (which is connected to PA0 pin) of the TIM2 is used in input
capture direct mode. So, use a cable to connect PA0 with PD15 pins. Set prescaler
value is 41999, counter mode is up, counter period is 1999 for TIM2 (Figure 19). Go
to NVIC settings and enable the interrupt for TIM2 (Figure 20). Go to System Core
and set the Preemption Priority as 1 for TIM2 (Figure 21). Then click Generate Code
and Open Project in Keil µVision.

Figure 19

Figure 20

Figure 21

12. Start the input capture mode for TIM2 using HAL_TIM_IC_Start_IT function with
PWM signal like in Figure 22. So, you can capture the generated PWM signal
frequency. You will use the TIM2 interrupt mode. Go to the stm32fxx.c file and write
the codes like in Figure23 in this file. Build and load the code. Observe a and b value
using debug. Find 8Capture value9 (CNT1-CNT2) and calculate applied signal period
according to this value multiplying period value for each value (Figure 24).

Figure 22

Figure 23

Figure 24

EXPERIMENT 6: USART PERIPHERALS

Objectives

The objectives of Experiment 6 is
● to learn how to use Universal Synchrous / Asynchrous Serial Communnications

peripherals

Apparatus Required:

● STM32CubeMx
● Keil µVision (MDK ARM)
● STM32 ST-Link Utility
● STM32F4 Microcontroller
● 2 Jumper Cables (female-female)

Preliminary Work:
1. Study the USART (L08) notes.
2. Write the codes of the experimental work in Keil µVision.

Experimental Work:

1. Create a new project in CubeMx (Figure 1). Select STMF407VGTx, then
STMF407G-DISC1 and finally Start Project (Figure 2). First adjust the
Pinout&Configuration settings. Close the unnecessary pins (Figure 3).

Figure 1

Figure 2

Figure 3

2. We use USART1 and USART2 peripherals in the lecture. Set the configuration for
USART1 (Figure 4) and USART 2 (Figure 5). Use USARTs in Asynchronous Mode.
BoudRate is 9600 Bits/s, Word Length is 8 Bits, Parity is None, Stop Bit is 1, Data
Direction is Receive and Transmit, Over Sampling is 16 Samples for both of the
USARTs. Select the PA0 pin as GPIO_EXTI0. Go to GPIO settings and set the GPIO
configurations for the PA0 pin as in Figure 6. Set the NVIC configurations as in
Figure 7.

Figure 4

Figure 5

Figure 6

Figure 7

3. There is no hardware connection between the USART. Use the cables to connect the
USART peripherals to each other. (Connect PA2 with PA10; Connect PA3 with PA9
using cables). Now, you can set the project manager configurations as in Figure 8 and
go to the Keil µVision by selecting Generate Code.

Figure 8

4. Go to main.c file and build the codes. Examine the main.c file to observe the
configurations which are already done in CubeMx. You should write the codes in
interrupt mode. Open the stm32fxx_it.c interrupt file.

Figure 9

5. When the button is pushed, transmit data from UART2 and write it into the transmit
buffer. Then go to UART2 and receive data from UART1. Write the data into the
receive buffer.
You should write the codes in interrupt mode. Open the stm32fxx_it.c interrupt file
and write the codes in that file (Figure 12). First, define the transmit and receive buffer
which will keep the transmitted and received data (Figure 10) . Use
HAL_UART_Transmit_IT function in EXTI0_IRQHandler function and
HAL_UART_Receive_IT function in USART2_IRQHandler function which is given

in Figure 10. Finally, build and Load the codes. Follow the change of variables using
the Debug menu (Figure 13).

Figure 10

Figure 11

Figure 12

Figure 13

6. You will make the changes within the EXTI0_IRQHandler function. Define tansmit1,
transmit2, receive and i variables. Assign <hello= to transmit1 and <world= to
transmit2 in char type (Figure 14). Each time the button is pushed, the value of the i
variable increases by 1. If it is an even number, transmit1 variable, if odd, transmit 2
variable from USART2 (Figure 15). Let USART2 also receive this data from
USART1. Follow the change of variables using the Debug menu (Figure 16).

Figure 14

Figure 15

Figure 16

